OST Ostschweizer Fachhochschule

Integration von Photonik in industrielle Fertigungsprozesse – Neue Ansätze und Entwicklungen

Fachkonferenz: Photonik und optische Technologien in St. Gallen Handelskammer Deutschland-Schweiz

Prof. Dr. Tobias Lamprecht

IMP Institut für Mikrotechnologie und Photonik Department Technik

Photonik in der Fertigung

Präzision

Miniaturisierung

Inhalt

Herstellung

One Piece Flow

Photonik erzeugt Miniaturisierte Optik

Transparent und hermetisch

Realisierung von funktionalen Minigehäusen

Charakterisierung

Zerstörungsfreie Inspektion

Optik für Hochleistungs-Laser

Optische Messtechnik

hochpräzise Kalibrierung für Photonendetektion

IMP Institut für Mikrotechnik und Photonik

Institute of Microtechnology and Photonics (IMP)

11. 11

Microtechnology (MEMS, MOEMS)

Miniaturized systems, ...

Production Metrology

Dimensions in highest accuracy

Photonic & Optics

...from development to production Fab Wafer based processing R&D Pilot line

Materials

Characterization and formulation of materials

powered by

OST

hySearch

- One Stop Shop f
 ür angewandte Sensor Forschung
- Hightech Technologietransfer f
 ür KMU
- Etablierte Start-up Angebote (Startfeld)
- Sensor-Entwicklungskette :: Expertise vom Sensorelemte bis zur Datennutzung

\bigcirc 6 6 6 6 6 **Miniaturlinsen** Selektives Ätzen und Laser-Polieren

Process

Laser-based manufacturing chain

Manufacturing

Complex mini-optics

Array in Fused Silica (D = 50 mm, t = 1 mm)

Lens element

- D = 1.8 mm
- Laser marking duration of lens
 - 6 min
- Roughness after SLE
 - 200 ... 500 nm RMS

- that is why polishing is needed

Design

Complex mini-optics

Features

- (1) CC surface
- (2) CX surface
- (3) Connected to the wafer by three small beams
 - thermal isolation
 - singulation structures
- (4) Small integrated aperture
 - Connected to small beams for singulation
 - Mask: laserpolishing, coating process

Process

«One»-Shot Laser Polishing

CX surface

Topography (Sensofar sNeox ePSI mode)

ISO 25178 - Rauheit (S-L)					
S-Filter (λs): Gauß, 2.5 μm, 1/2 Cut-off					
F: Form entfernt (TLSSP, R=1624.85					
L-Filter (Ac): Gauß, 0.05 mm, 1/2 Cut					
Höhen-Parameter					
Sq	5.07e-04	μm			

Conclusion

Highlights

- Combination of
 - SLE (Selective Laser Etching)
 - «one»-shot laser polishing
- Novel lens design :: wafer-level fabrication
- Precise center position
- SLE roughness can be reduced down to nm.

Outlook

Improving process control

YALCSYS

LASER MICROPROCESSING SOLUTIONS

Funktionale Miniatur-Glasgehäuse

Transparente & hermetische Präzisionsgehäuse aus Glas

heidi.cattaneo@ost.ch

Subsurface Damage

Zerstörungsfreie Prüfung

Motivation

Subsurface Damage as Damage Precursors

- **Origin** of **SSD** in optical materials:
 - Manufacturing steps, surface pretreatment, ٠
 - Coating process, handling, ... ٠
- SSDs: Local variations in material properties
 - Cracks, material inhomogeneities, contaminations ٠
 - Sub-stoichiometry coatings ٠
- **Consequences** of SSD:
 - Local changes in absorption and scattering ٠
 - **Initiators** for laser-induced **damage** ٠
 - Premature degradation, reduced damage resistance ٠

Experiment

Photothermal deflection (PTD) method

- Measurement principle:
 - Pump-probe experiment
 - local heating \rightarrow refractive index gradient
 - Probe beam deflection
 - Detection scheme: transmission

- PTD setup features:
 - Transparent optical substrates
 - Sample scanning with sub-micron resolution
 - Pump: 70 mW diode laser (CW) at 375 nm
 - Probe: stabilized HeNe laser
 - Non-destructive measurement method (!)

Results

Photothermal deflection (PTD) method

- Surface dislocation and material densification:
- Coated Fused Silica substrate
- Surface dislocation: previous high-power laser treatment (LIDT)
- Small signal increase/decrease due to surface dislocation

Surface dislocation in a coated sample

19

2 Examples of SSD detection

Photothermal deflection (PTD) method

- Damage precursor on Fused Silica substrate
- Super-polished FS substrate
- •
- Super-polished FS substrate Surface absorption below detection limit (super-polished surface) Small contamination of metallic origin on the surface Signal diminishes when the measurement volume is shifted inside the mater

michael.marxer@ost.ch

Kalibrierung von Blenden

Produktionsmesstechnik auf ein neues Niveau heben

Strahlungsmessungen im Weltall

- Klimaüberwachung
- 1971: PMOD in **Davos** → WRC das **Weltstrahlungszentrum**
- Referenzgeräten des WRC
- Präzisionsblenden für Referenzgeräte erforderlich

(PMOD: Physikalisch-Meteorologischen Observatorium Davos)

Bild: Strahlungsmessung für Sonnenstrahlung PMOD/WRC

Prinzip

Spezifikation

Messstrategie und Auswerteverfahren

OST

Messung der Blende taktil

- Optischer Fasertaster
- Tastelement Durchmesser 0.2 mm
- Messzeit für 10 Höhen à 1200 Punkte 4 h

Kante ideal

Kante real (Abweichungen stark übertrieben)

• Temperaturdrift < 0.05 K

Messmöglichkeiten in einzelnen Institutionen

	NMI 1	NMI 2	OST PMT (OST PMT
Taktil	Х	X	Х
Taktil Mikrotaster	х		Fasertaster
Optisch Telezentrisch		x	Х
Optische Endozentrisch			Х
Rasterscan optisch			Х
Messen bei 20°C	х	Х	Х
Messen bei 0°C			Neuentwicklung

Werth VideoCheck UA (Ultra Accuracy)

SACCREDITATION SACCRE

Ultragenaues Multisensor Koordinatenmessgerät

- Weltweit genauestes Multisensor-Koordinatenmessgerät
 - Max. Anzeigeabweichung f
 ür L
 ängenmessungen
 E_{0,MPE}=(0,15 + L / 2000) μm
- Messvolumen
 - 400 mm x 400 mm x 250 mm, Drehachse zur Werkstückorientierung
- Optimierungen
 - Thermisch entkoppelte Wärmequellen
 - Kühlung der Antriebsstränge
 - Thermisch optimaler Materialien (Keramik, Invar)
- Umgebung
 - Mittlere Temperatur: 20°C±0.25 K
 - Temperaturgradienten: 0.1 K/h; 0.25K/m

Messtechnik für Mikroteile

Messkopfsysteme Werth Video Check UA

Prof. Dr. Michael Marxer michael.marxer@ost.ch

Dr. Heidi Cattaneo heidi.cattaneo@ost.ch

David Bischof david.bischof@ost.ch

Kontakt

Tobias Lamprecht

Institutsleitung IMP Leitung Sensor Innovation Hub OST Campus Buchs tobias.lamprecht@ost.ch +41 58 257 34 22

